Debug and Test Techniques for Parallel
Software using Virtual Platforms

MP-SoC 2008

Achim Nohl, CoWare Inc.

®[ntroduction

@ Defects in Concurrent Software

@ Virtual Platform Based Debugging
® Triggering and Asserting Defects
® Reproducing and Tracing Defects

" Summary

Collare

The ESL Design Leader

Introduction

Languages and methodologies for parallel programming: “ Such
languages and methodologies may eventually be
forthcoming. But for now, a great deal of legacy sequential
software is being transformed into parallel code,
however laborious that process may be.” -
electronicdesign.com 04/2008

"Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to
debug it." - Brian W. Kernighan

: : =
Consequence: Debugging nightmare .28

The ESL Design Leader

Concurrent Software Defects

® Defects in sequential programs are largely deterministic
® Concurrent programs have more defect modes than
sequential ones
— Asynchronous interaction between multiple programs
® Many defects unique to concurrent programs are rare
probabilistic events
— Some defects require unlucky timing
— Harder to trigger the defect
® Changes in one program may cause bugs to emerge in
another.

— Source of a problem is likely not located in the program or core
where the problem is detected

— Harder to trace the symptom to the cause of the defect

Collare

The ESL Design Leader

Debugging using real Hardware

Debugging complex, time sensitive, concurrent
program defects with technology that is known for:
®Non-deterministic behavior ?

— Minimal timing changes of events have
huge impact on overall system behavior

— Defects are hard to reproduce
® | imited controllability ?
— Debugging is intrusive -> Heisenbug .

— Time cannot be stopped globally

— State provided by debuggers may be not coherent
®imited visibility ?

— Limited (in-consistent) exposure of platform registers and pins
®Consequences !

— Not sufficient for multi-core software development CoWare

The ESL Design Leader

Virtual Platform Debugging

A virtual platform is a (partial) model of the hardware SoC that can run real
embedded software with simulation performance close-to-realtime.
® Non intrusive global visibility and control
- A fundamental characteristic of a virtual platform
Global synchronous system stop
- No state change in any core or peripheral during global stop
-~ Ensures consistent system state

- Inspect system level program execution, registers, memories and signals
(e.g. interrupt lines)

Synchronous stop is a must to debug concurrent software
- But more is required!
Challenge: Debug and test the flow of concurrent software

- Each step every core advances the program counter and changes the state
of the platform

- Can you keep the overview?
-~ More debug automation required!

Virtual Platform Debugging

Virtual Platform based debugging solutions enable a
methodical process to debug parallel software defects

Debugging Process: Parallel software defects:

. ® Synchronization
1. Trigger a defect y

— Deadlocks

2. Catch the defect ® Shared memory

3. Reproduce the defect communication

- Race conditions
4. Trace back symptom to _
— Data corruption

defect cause ® Processor utilization!

— Starvation

Collare

The ESL Design Leader

Triggering the Defect

® Defect appears always
— Best case

® Defect appears sometimes
— Not really the worst case

® Defect appears never -
— At least not during development and test @
— Only after product has been rolled out

— Worst case NEWS
A BMW trapped a Thai
® Concurrent software defects | N palitician when the computer

Probabilisti A | crashed. The door locks;
— Probabilistic events 55’ windows, A/C and more were
can mask potential errors d“‘ inoperable.

ef Responders smashed the
windshield to get him out.

TIETIC

Example: Triggering Race Conditions

Shared (Off-chip)
Memory Core B Peripheral
trigger()
LJ A
B . at
0 gger race condaitic gere

Very likely this potential defect will never appear.

The high propability of a large off-chip peripheral
processing delay hides the defect.

A missing synchronization between read and write. h

e ESL Design Leader

Shared (Off-chip)
Memory Core B Peripheral

trigger()

nt

.............................. fead@ee | | Defect detection

through

__ parameterizeable
processing delays.
(Systematic
exploratory Testing)

Collare

The ESL Design Leader

Example: Triggering Race Conditions

Vt

Core A Shared Core B (Off-chip)
Memory Peripheral

trigger() '

= E

' compiewol J = ot

.’.f,)_”":“:\".- i

_________________________________ ead@ioc | ||

write @loc \‘

-- Defect detection
through
parameterizeable
processing delays
(Systematic
exploratory Testing)

Vt

Core A

Shared
Memory

Core B

(Off-chip)
Peripheral

trigger()

Ll_l

read @loc

complete() LJ % IM

g g gy A

: through
i core clo

i Defect detection

heterogeneous
ck frequencies.

(Systematic

i exploratory Testing) " A

Asserting Defects

® Software assertions are the best practice
method to catch fault conditions

— Classical software assertions cannot assert the global
platform state (apart from shared memory)

— No assertions with inter-core state dependencies
® System level software assertions required

-~ CoWare’s Virtual Platform scripting framework allow for
non-intrusive system level assertions

The ESL Design Leader

System Level Software Assertions

® Notify and react on events
- Register, memory, pin access and change
— Program control (e.g. Function call)
® |nspect state
— Register, memory and pin values
®Validate

— Assert correctness %

® Report
— Feedback assertion result
— Stop or carry state to next assertion

Collare

The ESL Design Leader

Asserting Race Conditions

Shared (Off-chip)
Memory Core B Peripheral

trigger()

H—J compme{_J %%; IAt |

Core A

read @loc

write @loc Virtual Platform ty
Debug Script] ¥ =,

: \ proc callBackA {}{
Virtual Platform -
Debug Script B if {!fDataReady}{

break simulation
proc callBackA {}{ = -
| set fDataReady 1 | ... | . ; set fRaceCondition 1
¥)

Vt ‘ ‘ ‘

callback

Virtual Platform Debugging

Virtual Platform based debugging solutions enable a
methodical process to debug parallel software defects

Debugging Process: Parallel software defects:

_ ® Synchronizati

v' Trigger a defect ynehronization
— Deadlocks

v' Catch the defect ® Shared memory

3. Reproduce the defect communication

v Race conditions

4. Trace back symptom to :
— Data corruption

defect cause ® Processor utilization!

— Starvation

Collare

The ESL Design Leader

Shared Memory Analysis Example

® Core A streams video data to core B:
— Core A runs and OS with a stream device driver.
— Device driver puts data into a circular buffer
— Core B decoder firmware reads data from buffer.
® Debugging/Analysis goal:
— Identify periods while buffer is empty (starvation)

— Assert buffer overrun (corruption)
Cor©ore C Q @
{ioWare

Buffer Buffer Buffer
s Full 3/4 Full Full OVETITUINhe ESL Design Leader

Shared Memory Analysis Example

1. Software watchpoint for

E Core A” on invalid memory Core B

region write access

2. Callback procedure raises

N3 T o

Shared Memory

O

assertion failed
3. Software watchpoint on
position addresses

4. Callback procedure adjusts

Circular Buffer

Core A Wth

watched region when

positions are updated

Core B

Core A |Watch

N) Collre

ared viemorv AnNeé AMDIE

Virtual Platform Control

Cockpit “Virtual Platform .
Analyzer” e Exeinal Datuggens_Hel Core A: Runs Linux OS. Here

disassembly of H.264 stream

! driver function.

~-ghHARDWARE
L @_ARMIZE ue | syabols |addrens | anstgficrs] misassently]
H T (e002aded] 15630000 smu Kl [KT)
- gihi_ATAPB0310 lelbdadtc] mov &0, £0

(e00gagen] LENEA R13, Ol

+-ghi_Clock
+- ghi_CweDisplayC
+ ghi_CunTouchSer
gl _DOTCMIES,
gl D TOMYBS_stub

54 lenfznies | EORGT RE, RO,

h264skremm write [c00222c8] ela0cO0d MOV R1Z. R13
(c02alcc] eS2ddfF0 STHNDS R1II. O
(e002a340] e24ch004 =0 RIL, R,

Ly o2Fsch 3 rocommerated

. 1r one

G205 sl Core B: Runs H.264 decoder

B cmet- e oo e zl{ firmware.
B ARMa2E -

harduare - umirg default,
restirg alobal configuration inatance.

Breakpoints and watchpoints
to assert shared memory
communication.

A G| [rwe | Tel Caimack | gt
TT) Watchpoirk PHVSICAL, ACCESS . ARMSZOCalbact. eRAZE
|2 @ watehporn rvaicaL, access ARMIZE
@) Watchpoirk PHYSICAL, ACCESS .. ARMSBACallbact, _ARMIEs
@)) Watchpoirk PHYSICAL, ACCESS .. ARMSBACallbact, L_ARMIES
@ @ watcnpoirs WAITE anates £n_PYMemory
R —— anates £n_PYMemory

| K1 — |

SharedBuffer starts at £8010000
SharedBuffer ends at 8050000

s edBul Eer g
inliza conplats

Bext Resd 0

Hext ¥rite 2000

Hext Read 0 —

Hext Weita 4000

P W16 Movse Player
File OptierssHelp o

o o Pead 32 £ 184 e

Report of the system level
shared memory software
access assertions.

Hext Read 0
Bext ¥rite £000

[Stpnors: vpa j0) PrOZA 0578 107 130 000

The ESL Design Leader

R CoKkag $ R Y0

4 Waveform View &2 o

|cursora [#] 1464515790 ps |
Diff — 1464515790 ps 1456 us 1460 us |14 us 1468 u

o T Software stack trace of core A
_= HARDWARE.LARMIZE | ir_get_empty_slot CONCTTTTY OO SO O O O el | 0 | mE
misc_init | m
(khelper param_sysfs_init 0 1
dequeue_entty m 0 |
Configure..| find_flesystem I
netink_change_ngroups |
__check_preempt_curr_fair m o mi
register_cpu m
inf_misc_binfmt
sched_fork] I [(9 [[0 T (6 [@ |60
slab_mamt_size o
ST = I o Access to shared memory
free_layer OEOmEn
I

idr_nre get
HARDWARE.LARM926 fboot

Tkemelfiq
Data cache write misses Ikthreadd

. it
Configure...

devices_init (] =
HARDWARE._ARM926 kfree_skbmem 1] Do :‘
P idr_get_empty_slot 1 mm |mim
rea
4 CRER LU i - LR Software stack trace of core B
Configure... equele_entky 1
find_filesy stem 5] |
skb_release_data | m i
__chack_preampt_curr_fair] [1] |m g
serio_thread |
sched_fork 1 (]
subsystem_init (] | Il
slab_mgmt_size m |m
sysfs_create_file]
rnetlink_init |
cdev_add o
idr_pre_get m o
buses_init 1 |
hrtimer_init] g o |ig
worker_thread i Mo

Oz 3| T —] I ||| R |

Virtual Platform Debugging

Virtual Platform based debugging solutions enable a
methodical process to debug parallel software defects

Debugging Process: Parallel software defects:

. ® Synchronization
v' Trigger a defect y

— Deadlocks

v' Catch the defect ® Shared memory

3. Reproduce the defect communication

v Race conditions

4. Trace back symptom to _
v Data corruption

defect cause ® Processor utilization!

v Data corruption

Problem Problem
cause symptom
| c cle§

n
atomic_notifier_call_chain =
inet_init

Stack trace analysis over time gives clarity about
entire history of function and instruction executions.
Helps to exclude many potential error sources to
efficiently narrow down the cause of the problem. c I" X

The ESL Design Leader

Tracing the Defect

Iteration

'———————~

Problem Problem
cause symptom
| c cle§

|
| . =O
Time to :
setup/reproduce ———0
the problem P
- " —@—0
I
... .. = 7 =O '

® Debugging is an iterative and manual task
® Huge time is spent re-producing the problem

Collare

The ESL Design Leader

Tracing the Defect

Iteration

Problem Problem
cause symptom
| c cle§

9 ® »O
System checkpoint is —
set at a time where the o ® @
program is assumed to
be still correct. o—e—0

o—0 @

® Debugging is an iterative and manual task
®wHuge time is spent re-producing the problem
@ Checkpoint/restore as a big productivity factor

Summary

® Using Virtual Platforms to
— Trigger, assert, trace software defects defect such as
— Deadlocks, race conditions, data corruption, starvation

®Virtual Platforms

— Will become the main means to debug defects
during embedded software development
for MP-SoCs.

— Provide unique non-intrusive and deterministic
« Observability &
« Controllability

— Allow for new debugging techniques, that
— increase productivity and reduce risk
— for software development

