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Introduction

Languages and methodologies for parallel programming: “ Such
languages and methodologies may eventually be
forthcoming. But for now, a great deal of legacy sequential
software is being transformed into parallel code,
however laborious that process may be.” -
electronicdesign.com 04/2008

"Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to
debug it." - Brian W. Kernighan

: : =
Consequence: Debugging nightmare .28
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Concurrent Software Defects

® Defects in sequential programs are largely deterministic
® Concurrent programs have more defect modes than
sequential ones
— Asynchronous interaction between multiple programs
® Many defects unique to concurrent programs are rare
probabilistic events
— Some defects require unlucky timing
— Harder to trigger the defect
® Changes in one program may cause bugs to emerge in
another.

— Source of a problem is likely not located in the program or core
where the problem is detected

— Harder to trace the symptom to the cause of the defect
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Debugging using real Hardware

Debugging complex, time sensitive, concurrent
program defects with technology that is known for:
®Non-deterministic behavior ?

— Minimal timing changes of events have
huge impact on overall system behavior

— Defects are hard to reproduce
® | imited controllability ?
— Debugging is intrusive -> Heisenbug .

— Time cannot be stopped globally

— State provided by debuggers may be not coherent
®imited visibility ?

— Limited (in-consistent) exposure of platform registers and pins
®Consequences !

— Not sufficient for multi-core software development CoWare
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Virtual Platform Debugging

A virtual platform is a (partial) model of the hardware SoC that can run real
embedded software with simulation performance close-to-realtime.
®  Non intrusive global visibility and control
- A fundamental characteristic of a virtual platform
Global synchronous system stop
- No state change in any core or peripheral during global stop
-~ Ensures consistent system state

- Inspect system level program execution, registers, memories and signals
(e.g. interrupt lines)

Synchronous stop is a must to debug concurrent software
- But more is required!
Challenge: Debug and test the flow of concurrent software

- Each step every core advances the program counter and changes the state
of the platform

- Can you keep the overview?
-~ More debug automation required!




Virtual Platform Debugging

Virtual Platform based debugging solutions enable a
methodical process to debug parallel software defects

Debugging Process: Parallel software defects:

. ® Synchronization
1. Trigger a defect y

— Deadlocks

2. Catch the defect ® Shared memory

3. Reproduce the defect communication

- Race conditions
4. Trace back symptom to _
— Data corruption

defect cause ® Processor utilization!

— Starvation
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Triggering the Defect

® Defect appears always
— Best case

® Defect appears sometimes
— Not really the worst case

® Defect appears never -
— At least not during development and test @
— Only after product has been rolled out

— Worst case NEWS
A BMW trapped a Thai
® Concurrent software defects | N palitician when the computer

Probabilisti A | crashed. The door locks;
— Probabilistic events 55’ windows, A/C and more were
can mask potential errors d“‘ inoperable.

ef Responders smashed the
windshield to get him out.
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Example: Triggering Race Conditions

Shared (Off-chip)
Memory Core B Peripheral
trigger()
LJ A
B . at
0 gger race condaitic gere

Very likely this potential defect will never appear.

The high propability of a large off-chip peripheral
processing delay hides the defect.

A missing synchronization between read and write. h
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Shared (Off-chip)
Memory Core B Peripheral

trigger()
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through
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processing delays.
(Systematic
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Collare

The ESL Design Leader




Example: Triggering Race Conditions
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Asserting Defects

® Software assertions are the best practice
method to catch fault conditions

— Classical software assertions cannot assert the global
platform state (apart from shared memory)

— No assertions with inter-core state dependencies
® System level software assertions required

-~ CoWare’s Virtual Platform scripting framework allow for
non-intrusive system level assertions
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System Level Software Assertions

® Notify and react on events
- Register, memory, pin access and change
— Program control (e.g. Function call)
® |nspect state
— Register, memory and pin values
®Validate

— Assert correctness %

® Report
— Feedback assertion result
— Stop or carry state to next assertion
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Asserting Race Conditions

Shared (Off-chip)
Memory Core B Peripheral

trigger()

H—J compme{_J %%; IAt |

Core A

read @loc

write @loc Virtual Platform ty
Debug Script ] ¥ =,

: \ proc callBackA {}{
Virtual Platform -
Debug Script B if {!fDataReady}{

break simulation
proc callBackA {}{ = -
| set fDataReady 1 | ... | . ; set fRaceCondition 1
¥ )

Vt ‘ ‘ ‘

callback

Virtual Platform Debugging

Virtual Platform based debugging solutions enable a
methodical process to debug parallel software defects

Debugging Process: Parallel software defects:

_ ® Synchronizati

v' Trigger a defect ynehronization
— Deadlocks

v' Catch the defect ® Shared memory

3. Reproduce the defect communication

v Race conditions

4. Trace back symptom to :
— Data corruption

defect cause ® Processor utilization!

— Starvation
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Shared Memory Analysis Example

® Core A streams video data to core B:
— Core A runs and OS with a stream device driver.
— Device driver puts data into a circular buffer
— Core B decoder firmware reads data from buffer.
® Debugging/Analysis goal:
— Identify periods while buffer is empty (starvation)

— Assert buffer overrun (corruption)
Cor©ore C Q @
{ioWare

Buffer Buffer Buffer
s Full 3/4 Full Full OVETITUINhe ESL Design Leader

Shared Memory Analysis Example

1. Software watchpoint for

E Core A” on invalid memory Core B

region write access

2. Callback procedure raises

N3 T o

Shared Memory

O

assertion failed
3. Software watchpoint on
position addresses

4. Callback procedure adjusts

Circular Buffer

Core A Wth

watched region when

positions are updated

Core B

Core A |Watch
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Virtual Platform Debugging

Virtual Platform based debugging solutions enable a
methodical process to debug parallel software defects

Debugging Process: Parallel software defects:

. ® Synchronization
v' Trigger a defect y

— Deadlocks

v' Catch the defect ® Shared memory

3. Reproduce the defect communication

v Race conditions

4. Trace back symptom to _
v Data corruption

defect cause ® Processor utilization!

v Data corruption

Problem Problem
cause symptom
| c cle§

n
atomic_notifier_call_chain =
inet_init

Stack trace analysis over time gives clarity about
entire history of function and instruction executions.
Helps to exclude many potential error sources to
efficiently narrow down the cause of the problem. c I" X
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Tracing the Defect

Iteration

'———————~

Problem Problem
cause symptom
| c cle§

|
| . =O
Time to :
setup/reproduce ———0
the problem P
- " —@—0
I
... .. = 7 =O '

® Debugging is an iterative and manual task
® Huge time is spent re-producing the problem
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Tracing the Defect

Iteration

Problem Problem
cause symptom
| c cle§

9 ® »O
System checkpoint is —
set at a time where the o ® @
program is assumed to
be still correct. o—e—0

o—0 @

® Debugging is an iterative and manual task
®wHuge time is spent re-producing the problem
@ Checkpoint/restore as a big productivity factor




Summary

® Using Virtual Platforms to
— Trigger, assert, trace software defects defect such as
— Deadlocks, race conditions, data corruption, starvation

®Virtual Platforms

— Will become the main means to debug defects
during embedded software development
for MP-SoCs.

— Provide unique non-intrusive and deterministic
« Observability &
« Controllability

— Allow for new debugging techniques, that
— increase productivity and reduce risk
— for software development




