
1

Debug and Test Techniques for Parallel
Software using Virtual Platforms

MP-SoC 2008

Achim Nohl, CoWare Inc.

2

AgendaAgenda

Introduction

Defects in Concurrent Software

Virtual Platform Based Debugging

Triggering and Asserting Defects

Reproducing and Tracing Defects

Summary

3

IntroductionIntroduction

Languages and methodologies for parallel programming: “Such
languages and methodologies may eventually be
forthcoming. But for now, a great deal of legacy sequential
software is being transformed into parallel code,
however laborious that process may be.” -
electronicdesign.com 04/2008

"Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to
debug it." - Brian W. Kernighan

Consequence: Debugging nightmare

4

Concurrent Software DefectsConcurrent Software Defects

Defects in sequential programs are largely deterministic

Concurrent programs have more defect modes than
sequential ones

– Asynchronous interaction between multiple programs

Many defects unique to concurrent programs are rare
probabilistic events

– Some defects require unlucky timing

– Harder to trigger the defect

Changes in one program may cause bugs to emerge in
another.

– Source of a problem is likely not located in the program or core
where the problem is detected

– Harder to trace the symptom to the cause of the defect

5

Debugging using real HardwareDebugging using real Hardware

Debugging complex, time sensitive, concurrent
program defects with technology that is known for:

Non-deterministic behavior ?
– Minimal timing changes of events have

huge impact on overall system behavior

– Defects are hard to reproduce

Limited controllability ?
– Debugging is intrusive -> Heisenbug

– Time cannot be stopped globally

– State provided by debuggers may be not coherent

Limited visibility ?
– Limited (in-consistent) exposure of platform registers and pins

Consequences !
– Not sufficient for multi-core software development

6

Virtual Platform DebuggingVirtual Platform Debugging
A virtual platform is a (partial) model of the hardware SoC that can run real

embedded software with simulation performance close-to-realtime.

Non intrusive global visibility and control
– A fundamental characteristic of a virtual platform

Global synchronous system stop
– No state change in any core or peripheral during global stop

– Ensures consistent system state

– Inspect system level program execution, registers, memories and signals
(e.g. interrupt lines)

Synchronous stop is a must to debug concurrent software
– But more is required!

Challenge: Debug and test the flow of concurrent software
– Each step every core advances the program counter and changes the state

of the platform

– Can you keep the overview?

– More debug automation required!

7

Virtual Platform Debugging Virtual Platform Debugging

Parallel software defects:

Synchronization

– Deadlocks

Shared memory

communication

– Race conditions

– Data corruption

Processor utilization!

– Starvation

Debugging Process:

1. Trigger a defect

2. Catch the defect

3. Reproduce the defect

4. Trace back symptom to

defect cause

Virtual Platform based debugging solutions enable a
methodical process to debug parallel software defects

8

Triggering the DefectTriggering the Defect

Defect appears always
– Best case

Defect appears sometimes
– Not really the worst case

Defect appears never
– At least not during development and test

– Only after product has been rolled out

– Worst case

Concurrent software defects
– Probabilistic events

can mask potential errors

NEWS
A Toyota recalls
75,000 Prius hybrids
due to a software
defect

NEWS
A BMW trapped a Thai
politician when the computer
crashed. The door locks,
windows, A/C and more were
inoperable.
Responders smashed the
windshield to get him out.

9

Example: Triggering Race ConditionsExample: Triggering Race Conditions

Core A Core B
Shared
Memory

write @loc

read @loc

(Off-chip)
Peripheral

trigger()

complete()

t

t

Very likely this potential defect will never appear.
The high propability of a large off-chip peripheral
processing delay hides the defect.
A missing synchronization between read and write.

How to trigger race conditions defects?

10

Example: Triggering Race ConditionsExample: Triggering Race Conditions

Core A Core B
Shared
Memory

write @loc

read @loc

(Off-chip)
Peripheral

trigger()

complete()

t

t

Defect detection
through
parameterizeable
processing delays.
(Systematic
exploratory Testing)

11

Example: Triggering Race ConditionsExample: Triggering Race Conditions

Core A Core B
Shared
Memory

write @loc

read @loc

(Off-chip)
Peripheral

trigger()

complete()

t

t

Defect detection
through
parameterizeable
processing delays
(Systematic
exploratory Testing)

12

Example: Triggering Race ConditionsExample: Triggering Race Conditions

Core A Core B
Shared
Memory

write @loc

(Off-chip)
Peripheral

t

read @loc

trigger()

complete() t

Defect detection
through heterogeneous
core clock frequencies.
(Systematic
exploratory Testing)

How to catch race condition defects?

13

Asserting DefectsAsserting Defects

Software assertions are the best practice
method to catch fault conditions

– Classical software assertions cannot assert the global
platform state (apart from shared memory)

– No assertions with inter-core state dependencies

System level software assertions required
– CoWare’s Virtual Platform scripting framework allow for

non-intrusive system level assertions

14

System Level Software Assertions System Level Software Assertions

Notify and react on events
– Register, memory, pin access and change

– Program control (e.g. Function call)

Inspect state
– Register, memory and pin values

Validate
– Assert correctness

Report
– Feedback assertion result

– Stop or carry state to next assertion

15

Asserting Race ConditionsAsserting Race Conditions

Core A Core B
Shared
Memory

write @loc

(Off-chip)
Peripheral

t

read @loc

trigger()

complete() t

BP

proc callBackA {}{
set fDataReady 1

}

BP

proc callBackA {}{
if {!fDataReady}{
break_simulation
set fRaceCondition 1

}
}

ca
llb

ac
k

ca
llb

ac
k

Virtual Platform
Debug Script

Virtual Platform
Debug Script

16

Virtual Platform Debugging Virtual Platform Debugging

Parallel software defects:

Synchronization

– Deadlocks

Shared memory

communication

Race conditions

– Data corruption

Processor utilization!

– Starvation

Debugging Process:

Trigger a defect

Catch the defect

3. Reproduce the defect

4. Trace back symptom to

defect cause

Virtual Platform based debugging solutions enable a
methodical process to debug parallel software defects

17

Shared Memory Analysis ExampleShared Memory Analysis Example

Core A streams video data to core B:
– Core A runs and OS with a stream device driver.

– Device driver puts data into a circular buffer

– Core B decoder firmware reads data from buffer.

Debugging/Analysis goal:
– Identify periods while buffer is empty (starvation)

– Assert buffer overrun (corruption)
Core A

Buffer
½ Full

Core B

Buffer
3/4 Full

Buffer
Full

Buffer
Overrun

18

Shared Memory Analysis ExampleShared Memory Analysis Example

Circular Buffer

Core A

Core B

Shared Memory

Core A Watch

Watch

Watch

Circular Buffer

Core A

Core B

Shared Memory

Valid

Valid Core AValid

Valid

Core A

write

Core B

read

Core A Core B

T
i
m
e

2

1. Software watchpoint for

“Core A” on invalid memory

region write access

2. Callback procedure raises

assertion failed

3. Software watchpoint on

position addresses

4. Callback procedure adjusts

watched region when

positions are updated

1. Software watchpoint for

“Core A” on invalid memory

region write access

2. Callback procedure raises

assertion failed

3. Software watchpoint on

position addresses

4. Callback procedure adjusts

watched region when

positions are updated

write

19

Shared Memory Analysis ExampleShared Memory Analysis Example

Core A: Runs Linux OS. Here
disassembly of H.264 stream
driver function.

Core A: Runs Linux OS. Here
disassembly of H.264 stream
driver function.

Core B: Runs H.264 decoder
firmware.

Core B: Runs H.264 decoder
firmware.

Breakpoints and watchpoints
to assert shared memory
communication.

Breakpoints and watchpoints
to assert shared memory
communication.

Report of the system level
shared memory software
access assertions.

Report of the system level
shared memory software
access assertions.

Visualized circular
buffer.

Visualized circular
buffer.

Virtual Platform Control
Cockpit “Virtual Platform
Analyzer”

Virtual Platform Control
Cockpit “Virtual Platform
Analyzer”

20

Virtual Platform Software AnalysisVirtual Platform Software Analysis

Software stack trace of core ASoftware stack trace of core A

Software stack trace of core BSoftware stack trace of core B

Access to shared memoryAccess to shared memory

21

Virtual Platform Debugging Virtual Platform Debugging

Parallel software defects:

Synchronization

– Deadlocks

Shared memory

communication

Race conditions

Data corruption

Processor utilization!

Data corruption

Debugging Process:

Trigger a defect

Catch the defect

3. Reproduce the defect

4. Trace back symptom to

defect cause

Virtual Platform based debugging solutions enable a
methodical process to debug parallel software defects

22

Tracing the DefectTracing the Defect

1.

cycles

Problem
cause

Problem
symptom

Program state can be
traced back non-
ambiguously and
manually only for a
limited amount of
cycles.

Stack trace analysis over time gives clarity about
entire history of function and instruction executions.
Helps to exclude many potential error sources to
efficiently narrow down the cause of the problem.

23

Tracing the DefectTracing the Defect

1.

cycles

Problem
cause

Problem
symptom

2.

3.

4.

5.

Forward
Debugging

Debugging is an iterative and manual task
Huge time is spent re-producing the problem

Ite
ra

tio
n Time to

setup/reproduce
the problem

24

Tracing the DefectTracing the Defect

1.

cycles

Problem
cause

Problem
symptom

2.

3.

4.

5.

Forward
Debugging

Debugging is an iterative and manual task

Huge time is spent re-producing the problem

Checkpoint/restore as a big productivity factor

Ite
ra

tio
n System checkpoint is

set at a time where the
program is assumed to
be still correct.

25

SummarySummary

Using Virtual Platforms to
– Trigger, assert, trace software defects defect such as

– Deadlocks, race conditions, data corruption, starvation

Virtual Platforms
– Will become the main means to debug defects

during embedded software development
for MP-SoCs.

– Provide unique non-intrusive and deterministic
• Observability &

• Controllability

– Allow for new debugging techniques, that

– increase productivity and reduce risk

– for software development

